An Energy Efficient RF Transceiver for Wireless Microsensor Networks
نویسندگان
چکیده
A wireless microsensor network consists of a group of sensor nodes that are deployed remotely and used to relay sensing data to the end-user. Due to their remote deployment, large scale wireless sensor networks require a low-power, energy efficient transceiver that can operate for years on a single battery. Existing wireless transceivers designed for low-power wireless standards like IEEE 802.15.4 have difficulty meeting such stringent energy requirements. Thus, a custom on-off keying wireless transceiver for sensor networks has been designed in a 0.18-μm CMOS process. Power savings are achieved by using an envelope detection based architecture that leverages SAW components and through advanced circuit techniques. The transceiver is power-aware, able to scale power consumption in response to operating conditions. Circuit optimizations are made in both high frequency and baseband circuits to minimize the number of off-chip components and to achieve optimal energy efficiency. A thorough comparison of radio-frequency tuned and untuned gain stages shows that untuned gain can offer energy efficiency advantages in many situations. The transceiver operates in the 900 MHz ISM band at a data rate of 1 Mbps. The receiver’s sensitivity is scalable from -37 dBm to -71 dBm with power consumption ranging from 500 μW to 2.4 mW. These power levels correspond to an energy per bit ratio of 0.5 to 2.4 nanojoules per bit, more than ten times smaller than the ratio of typical wireless receivers. The transmitter supports output power levels from -10 dBm to -1 dBm and has a maximum power efficiency of 11%. Thesis Supervisor: Anantha P. Chandrakasan Title: Professor, Department of Electrical and Computer Engineering
منابع مشابه
Energy efficient protocols for low duty cycle wireless microsensor networks
Emerging distributed wireless microsensor networks will enable the reliable and fault tolerant monitoring of the environment. Such microsensors are required to operate for years from a small energy source, while maintaining reliable communication link to the basestation. The design of energy-aware communication protocols can have a dramatic impact on the network lifetime for such applications. ...
متن کاملA 910MHz Injection Locked BFSK Transceiver for Wireless Body Sensor Network Using Colpitts Oscillator
A 910MHz high efficiency RF transceiver for Wireless Body Area Network in medical application is presented in this paper. High energy efficiency transmitter and receiver architectures are proposed. In wireless body sensor network, the transmitter must have higher efficiency compared with the receiver because a large amount of data is sent from sensor node to receiver of the base station and sma...
متن کاملAn Efficient Cluster Head Selection Algorithm for Wireless Sensor Networks Using Fuzzy Inference Systems
An efficient cluster head selection algorithm in wireless sensor networks is proposed in this paper. The implementation of the proposed algorithm can improve energy which allows the structured representation of a network topology. According to the residual energy, number of the neighbors, and the centrality of each node, the algorithm uses Fuzzy Inference Systems to select cluster head. The alg...
متن کاملEnergy-Efficient Link Layer for Wireless Microsensor Networks
Wireless microsensors are being used to form large, dense networks for the purposes of long-term environmental sensing and data collection. Unfortunately, these networks are typically deployed in remote environments where energy sources are limited. Thus, designing fault-tolerant wireless microsensor networks with long system lifetimes can be challenging. By applying energy-efficient techniques...
متن کاملToward an energy efficient PKC-based key management system for wireless sensor networks
Due to wireless nature and hostile environment, providing of security is a critical and vital task in wireless sensor networks (WSNs). It is known that key management is an integral part of a secure network. Unfortunately, in most of the previous methods, security is compromised in favor of reducing energy consumption. Consequently, they lack perfect resilience and are not fit for applications ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005